# **Engineering Maths**First Aid Kit

# The straight line

### Introduction

Straight line graphs arise in many engineering applications. This leaflet discusses the mathematical equation which describes a straight line and explains the terms 'gradient' and 'intercept'.

# 1. The equation of a straight line

Any equation of the form

$$y = mx + c$$

where m and c are fixed numbers, (i.e. constants), has a graph which is a straight line.

For example,

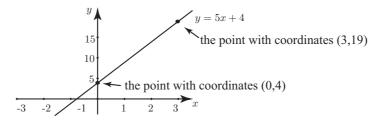
$$y = 3x + 5$$
,  $y = \frac{2}{3}x + 8$  and  $y = -3x - 7$ 

all have graphs which are straight lines, but

$$y = 3x^2 + 4$$
,  $y = \frac{2}{3x} - 7$ , and  $y = -14\sqrt{x}$ 

have graphs which are not straight lines. The essential feature of a straight line equation is that x and y occur only to the power 1.

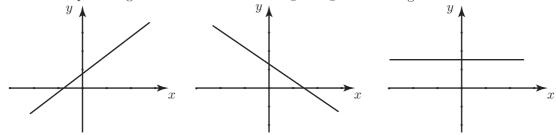
# 2. The straight line graph


Any straight line graph can be plotted very simply by finding just two points which lie on the line and joining them. It is a good idea to find a third point just as a check.

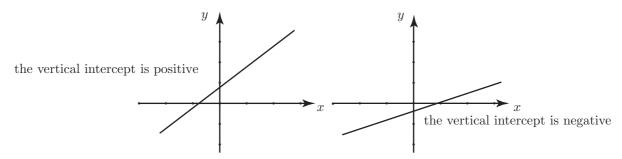
#### Example

Plot a graph of the straight line with equation y = 5x + 4.

#### Solution


From the equation, note that when x = 0, the value of y is 4. Similarly when x = 3, y = 19. So the points (0,4) and (3,19) lie on the graph. These points are plotted and joined together to form the straight line graph.




# 3. The gradient and intercept of a straight line

In the equation y = mx + c the value of m is called the **gradient** of the line. It can be positive, negative or zero. Lines with a positive gradient slope upwards, from left to right. Lines with a negative gradient slope downwards from left to right. Lines with a zero gradient are horizontal.

this line has a positive gradient this line has a negative gradient the gradient of this line is zero



The value of c is called the **vertical intercept** of the line. It is the value of y when x = 0. When drawing a line, c gives the position where the line cuts the vertical axis.



## Example

Determine the gradient and vertical intercept of each line.

a) 
$$y = 12x - 6$$
, b)  $y = 5 - 2x$ , c)  $4x - y + 13 = 0$ , d)  $y = 8$ , e)  $y = 4x$ .

#### Solution

a) Comparing y = 12x - 6 with y = mx + c we see that m = 12, so the gradient of the line is 12. The fact that this is positive means that the line slopes upwards as we move from left to right. The vertical intercept is -6. This line cuts the vertical axis below the horizontal axis.

b) Comparing y = 5 - 2x with y = mx + c we see that m = -2, so the gradient is -2. The line slopes downwards as we move from left to right. The vertical intercept is 5.

c) We write 4x - y + 13 = 0 in standard form as y = 4x + 13 and note that m = 4, c = 13.

d) Comparing y = 8 with y = mx + c we see that m = 0 and c = 8. This line is horizontal.

e) Comparing y = 4x with y = mx + c we see that m = 4 and c = 0.

#### **Exercises**

1. State the gradient and intercept of each of the following lines.

a) 
$$y = 5x + 6$$
, b)  $y = 3x - 11$ , c)  $y = -2x + 7$ , d)  $y = 9$ , e)  $y = 7 - x$ 

#### Answers

1. a) gradient 5, intercept 6 b) 3,-11, c) -2,7, d) 0,9, e) -1,7.